The solar energy intensity W/m² primarily reaching the planet's surface is what actually determines the planet's surface temperatures

The distance a planet orbits sun determines the solar flux’ intensity incident on it.

For Earth it is So = 1361 W/m²

For Moon it is So = 1361 W/m²

And For Mars it is S = 585,4 W/m²

– We consider solar flux on the Earth’s TOA (top of atmosphere) as

So = 1361 W/m²

Because not the entire solar radiative energy reaches Earth’s surface.

– Earth’s Albedo is on average a=0,306 because of the clouds which reflect stronger than surface, so the combined diffuselly reflected energy is on average

Jdiffuse = 0,306*So W/m².

– Thus only the (1-a)So = 0,694So = 0,694*1361 W/m² = 944,5 W/m² on average reaches a flat plate on Earth’s surface perpendicular oriented to the solar rays.

– Earth’s TOA is where we can measure the exact solar flux at the Earth’s distance from the Sun.

–––––––––––

The solar energy intensity W/m² primarily reaching the planet's surface is what actually determines the planet's surface temperatures.

In other words it is the distance from the sun which makes the solar energy reaching planet weaker. It is the square inverse law:

1 /R² - where R is the distance from the sun in AU (astronomical units) 

    What planet's surface is capable to do with the incoming solar energy (how effectively it is capable to hold the incoming energy) also determines the level of the surface temperatures.

    One of the energy "holding" planet's surface properties is the atmosphere greenhouse effect.

    Yes, but in Earth's case the greenhouse effect is very weak and cannot be considered as an important Earth's surface warming factor.

    Other factors influencing planet's surface temperature are the planet's surface reflection ability and the planet's surface emission /accumulation ratio.

Table 1. Comparison of Predicted vs. Measured Temperature for All Planets

Table 1. Comparison of Predicted vs. Measured Temperature for All Planets

            Distance  Flux    Factor   Bond    rot /day     surface    cal /gr.oC Warm.Factor     °K            °K              °K           °K

                  ( AU )  ( W/m² )     Φ    Albedo    N Spin       Type         Cp   (β*N*cp)¹∕ ⁴    Te    Te.correct  Tmean   Tsat 

Mercury   0,387    9082,7    0,47    0,068    0,00568    basalt    0,20   0,64250      439,6      364,0      325,83    340

Venus       0,723     2601,3       1       0,77      60/243       gases     0,19     1,6287      226,6      255,98       -         737 

Earth           1,0        1361       0,47   0,306       1,0           ocean     1          3,4996       254        210      287,74     288

Moon          1,0         1361      0,47    0,11     0,0339     regolith    0,19     0,99141    270,04     224    223,35     220

Mars          1,524     586,4     0,47    0,25     0,9728         rock       0,18     2,26495    209,8       174      213,11    210

Ceres         2,77      177,38      1        0,09     2,645           ice          1          4,463       162,9       162,9      236        -

Jupiter      5,20       50,37        1       0,503   2,417           gases       -                 -              102         102           -     165 at 1 bar level

Io             5,20       50,37         1      0,63     0,5559        rock        0,145    1,8647    95,16       95,16      111,55    110 

Europa     5,20       50,37       0,47   0,63     0,2816         ice              1         2,5494    95,16    78,83     99,56      102 

Ganymede  5,20   50,37       0,47    0,41    0,1398         ice              1         2,14     107,08      88,59    107,14     110

Calisto    5,20        50,37         1       0,22     0,0599       ice               1        1,7313    114,66   114,66   131,52   134±11

Saturn    9,58        14,84         1      0,342    2,273           gases        -            -          81             81               -    134 at 1 bar level 

Enceladus 9,58     14,84        1       0,85     0,7299         ice             1       3,2347    55,97        55,97     75,06       75 

Tethys   9,58         14,84        1       0,70     0,52971       ice           1        2,9856    66,55       66,55      87,48     86 ± 1

Titan      9,58        14,84        1       0,22     0,06289      gases     0,4980    1,47223  84,52      84,52      93,10     93,7 

Uranus  19,22         3,687      1       0,30     1,389           gases         -                -       58 MM *      -             -      76 at 1 bar level 

Neptune 30,33       1,48        1       0,29     1,493           gases             -            -          46,4          46,4         -      72 at 1 bar level

Triton      30,33       1,48    0,47 (?)  0,76    0,17021      rock      0,4116      1,800       35,4        29,29     33,92      38

2) Triton   30,33      1,48     1 (?)   0,76     0,17021        rock      0,4116      1,800       35,4        35,4       40,97      38

Pluto        39,48       0,874     1      0,50      0,1565        rock         0,248     1,5533       37            37        41,6       44

Charon     39,48      0,874     1       0,2       0,1565          ice           1            2,2014      41,90      41,90    51,04     53

Opponent:

There has to be a tested hypothesis. Otherwise its not reliable.

No quality assurance? No replication? No checking? No testing?

Not even peer review?

Its unreliable!


Answer:

"There has to be a tested hypothesis. Otherwise its not reliable.”

Or , as Richard Feynman said “It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If it doesn’t agree with experiment, it’s wrong.”
-
Well, the method we use in present research is "the planets surface the satellite measured temperatures comparison".
-
We do everything correctly. Haven't we demonstrate reproducible experiments?
-
When we do the same calculations on every planet and on every moon in solar system and the results are so very much close to those measured by satellites... those calculations are adequate to the very much convincing reproducible experiments!