The Planet Surface Rotational Warming Phenomenon

The Planet Mean Surface Temperature Equation Tmean = [ Φ (1-a) S (β*N*cp)¹∕ ⁴ /4σ ]¹∕ ⁴

About author and about the discovery


My name is Christos J. Vournas, M.Sc. mechanical engineer.

I live in Athens Greece.

My e-mail address is:

The date is October 11, 2019

I launched this site to have an opportunity to publish my scientific discoveries on the Climate Change.

I have been studying the Planet Earth’s Climate Change since November 2015;

The method I use is the ”Planet Surface Temperatures Comparison Method”

First I discovered the Reversed Milankovitch Cycle.

Then I found the faster a planet rotates (n2>n1) the higher is the planet’s average (mean) temperature T↑mean.

Φ - the next discovery - it is the dimensionless Solar Irradiation accepting factor - very important.


The further studies led me to discover the

Rotating Planet Spherical Surface Solar Irradiation Absorbing-Emitting Universal Law


the Planet Without-Atmosphere Mean Surface Temperature Equation.

A Planet Universal Law Equation


As you know, to maintain a Planet Universal Law Equation one has to study all the planets' behavior.

In that way only one may come to general conclusions. That is why I call our Earth as a Planet Earth. After all Earth is a Planet and as a Planet it behaves in accordance to the Universal Laws - as all Planets in the Universe do.

The Planet's Mean Surface Temperature Equation has the wonderful ability the calculated results closely matching to the measured by satellites planets' mean temperatures. This New Universal Equation can be applied to all the without atmosphere planets and moons in a solar system.

The more we compare the planets' surface temperatures, the more we understand the planets' surface warming phenomenon.