# The Planet Surface Rotational Warming Phenomenon

## The Planet Mean Surface Temperature Equation Tmean = [ Φ (1-a) S (β*N*cp)¹∕ ⁴ /4σ ]¹∕ ⁴

### Earth, Moon and Mars – two very important observations – conclusions

We are ready now to make two very important observations.

1. Moon and Mars

Moon’s satellite measured Tsat.mean.moon = 220 K

Mars’ satellite measured Tsat.mean.mars = 210 K

These two observed temperatures on the different planets (Mars and Moon) are very close.

The solar flux on Moon is So = 1.361 W/m².

The solar flux on Mars is S.mars = 586,4 W/m².

Thus we observe here that there can be planets with different solar irradiation fluxes, and yet the planets may have (for equal albedo) the same mean surface temperatures.

So we may have:

Many planets with different solar irradiation fluxes, and yet the planets may have (for equal albedo) the same mean surface temperatures.

Conclusion:

Many different solar fluxes (for equal albedo) can create the same mean surface temperatures.

2. Moon and Earth

Moon’s satellite measured Tsat.mean.moon = 220 K

Earth’s satellite measured Tsat.mean.earth = 288 K

These two observed temperatures on the different planets (Moon and Earth) are very different.

The solar flux on Moon is So = 1.361 W/m².

The solar flux on Earth is So = 1.361 W/m².

Thus we observe here that there can be planets with the same solar irradiation fluxes, and yet the planets may have (for equal albedo) very different mean surface temperatures.

So we may have:

Many planets with the same solar irradiation fluxes, and yet the planets may have (for equal albedo) different mean surface temperatures.

Conclusion:

Many different global temperature distributions (for equal albedo) can balance the same solar flux.

These two very important observations – conclusions lead us to the discovery of the Planet Surface Rotational Warming Phenomenon.