The Planet's Effective Temperature Complete Formula Te = [ Φ (1-a) S (β*N*cp)¹∕ ⁴ /4σ ]¹∕ ⁴

Plus the introduction to the Reversed Milankovitch Cycle. Click above on the box for more

Mercury / Moon / Mars satellite measured mean temperatures 340 K, 220 K and 210 K comparison

These ( Tmean, R, N, and albedo ) planets' parameters are all satellites measured. These planets' parameters are all observations.

Planet….Mercury….Moon….Mars

Tsat.mean.340 K….220 K…210 K

R…......0,387 AU..1 AU..1,525 AU

1/R²…..6.6769….....1….…0,430

N…1 /58,646..1 /29,531..0,9747

a......0,088......0,136......0,250

 

Mercury: Tsat.mean = 340 K

[ (1/R²)*(N)¹∕ ⁴ ]¹∕ ⁴ = [ 6,6769*(1/58,6460)¹∕ ⁴ ] ¹∕ ⁴ = 1,2463

Moon: Tsat.mean = 220 K

[ (1/R²)*(N)¹∕ ⁴ ]¹∕ ⁴ = [ 1*(1/29,531)¹∕ ⁴ ] ¹∕ ⁴ = 0,8093

Mars: Tsat.mean = 210 K

[ (1/R²)*(N)¹∕ ⁴ ]¹∕ ⁴ = [ 0,430*(0,9747)¹∕ ⁴ ] ¹∕ ⁴ = 0,8090

 

Tmean.mercury /Tmean.moon = 340 K/220 K = 1,5454…

Mercury [ (1/R²)*(N)¹∕ ⁴ ]¹∕ ⁴ / Moon [ (1/R²)*(N)¹∕ ⁴ ]¹∕ ⁴ = 1,2463 /0,8093 = 1,53997

They are almost identical, because Mercury and Moon have close (1-albedo) values: amoon = 0,136 and amercury = 0,088. For Moon (1-0,136)=0,864 and for Mercury (1-0,88)=0,912

 

Moon /Mars = 0,8093 /0,8090 = 1,00037 or 0,037 %

If Moon and Mars had the same albedo amoon = 0,136 they would both have the same satellite measured mean temperature Tmean = 220 K. Mars' albedo is amars = 0,25.

And

It is the confirmation that the planet's rotations per day "N" should be considered in the Te planet complete formula in the fourth root:

Te.planet = [ Φ (1-a) S (β*N*cp)¹∕ ⁴ /4σ ]¹∕ ⁴.

.