### 8. Calisto’s (Jupiter’s satellite) Effective Temperature Calculation

**8. Calisto’s (Jupiter’s satellite) Effective Temperature Calculation: **

** So = 1.362 W/m² (So is the Solar constant) **

**Calisto’s albedo: acalisto = 0,22 **

**Calisto has a heavy cratered surface (golf ball surface) and that makes the difference with Europa, and Europa’s albedo aeuropa = 0,63. **

**Calisto is an ice-crust planet (rocky) without atmosphere, but Calisto has a heavy cratered surface (golf ball surface) so Calisto’s surface irradiation accepting factor Φcalisto = 1 **

**Calisto’s surface consists of water ice crust (by estimation), so **

**Cp.calisto = 1cal/gr*oC **

**1/R² = 1/5,2044² = 0,0369 times lesser is the solar irradiation on Jupiter than that on Earth, the same on its satellite Calisto Calisto’s orbital period is 16,689.0184 days**

** Calisto’s sidereal rotation period is synchronous**

**β = 150 days*gr*oC/rotation*cal – it is the Planet Surface Solar Irradiation Absorbing-Emitting Universal Law constant**

** σ = 5,67*10⁻⁸ W/m²K⁴, a Stefan-Boltzmann constant**

** Calisto’s effective temperature Te.calisto is:**

** Te.calisto = [ Φ (1-a) So (1/R²) (β*N*cp)¹∕ ⁴ /4σ ]¹∕ ⁴ **

**Τe.calisto = { 1*(1-0,22)1.362W/m² *0.0369*[150*(1/16,689)*1]¹∕ ⁴ /4*5,67*10⁻⁸ W/m²K⁴ }¹∕ ⁴**

**Te.calisto = 131,52 K **

**Tsat.mean.calisto = 134 K ± 11 **

**Calisto is an ice crust planet, and we know for sure that ice is not a poor emitter, ε = 0,90 (1/0,90)¹∕ ⁴ = 1,027 So we would have: **

**Te.calisto = 131,52 K * 1,027 = 135,071 K. **