# A Planet Effective Temperature Complete Formula Te = [ Φ (1-a) S (β*N*cp)¹∕ ⁴ /4σ ]¹∕ ⁴

## Plus the introduction to the Reversed Milankovitch Cycle. Click on the box for more

### 4. Mercury’s Effective Temperature Calculation

4. Mercury’s Effective Temperature Calculation:

Te.mercury

N = 1/58,646 rotations/per day, Planet Mercury completes one rotation around its axis in 58,646 days.

Mercury average distance from the sun is R=0,387AU. The solar irradiation on Mercury is (1/R)² = (1AU/0,387AU)²= 2,584²= 6,6769 times stronger than that on Earth.

Mercury’s albedo is: amercury = 0,088

Mercury is a rocky planet, Mercury’s surface irradiation accepting factor: Φmercury = 0,47

Cp.mercury = 0,19cal/gr oC, Mercury’s surface is considered as a dry soil

β = 150 days*gr*oC/rotation*cal – it is a Rotating Planet Surface Solar Irradiation Absorbing-Emitting Universal Law constant

σ = 5,67*10⁻⁸ W/m²K⁴, the Stefan-Boltzmann constant

So = 1.362 W/m² the Solar constant

Mercury’s Effective Temperature Complete Formula is:

Te.mercury = [ Φ (1-a) So (1/R²) (β*N*cp)¹∕ ⁴ /4σ ]¹∕ ⁴

Planet Mercury’s effective temperature Te.mercury is:

Te.mercury = { 0,47(1-0,088) 1.362 W/m²*6,6769*[150* (1/58,646)*0,19]¹∕ ⁴ /4*5,67*10⁻⁸ W/m²K⁴ }¹∕ ⁴ =

Te.mercury = 346,11 K

The calculated Mercury’s Effective Temperature Te.mercury = 346,11 K is only 1,80% higher than the measured by satellites

Tsat.mean.mercury = 340 K !