A Planet Effective Temperature Complete Formula Te = [ Φ (1-a) S (β*N*cp)¹∕ ⁴ /4σ ]¹∕ ⁴

Plus the introduction to the Reversed Milankovitch Cycle. Click on the box for more

5. Ganymede’s (Jupiter’s satellite) Effective Temperature Calculation

5. Ganymede’s (Jupiter’s satellite) Effective Temperature Calculation:

So = 1.362 W/m² (So is the Solar constant)

Ganymede’s albedo: aganimede = 0,43

Ganymede is a rocky planet without atmosphere, Ganymede’s surface irradiation accepting factor Φganimede = 0,47

σ = 5,67*10⁻⁸ W/m²K⁴, the Stefan-Boltzmann constant

β = 150 days*gr*oC/rotation*cal – it is the Planet Surface Solar Irradiation Absorbing-Emitting Universal Law constant

Ganymede’s surface consists of 60% water ice crust and 40% rocky land

Cp.ganymede = 1*0,6 + 0,19*0,4 = 0,676 cal/gr*oC

1/R² = 1/5,2044² = 0,0369 times lesser is the solar irradiation on Jupiter than that on Earth, the same on its satellite Ganymede

Ganymede’s orbital period is 7,15455 days

Ganymede’s sidereal rotation period is synchronous

N = 1/7,15455 rotations /per day

Ganymede’s effective temperature Te.ganymede is:

Te.ganymede = [ Φ (1-a) So (1/R²) (β*N*cp)¹∕ ⁴ /4σ ]¹∕ ⁴

Τe.ganymede = { 0,47(1-0,43)1.362 W/m² *0.0369*[150*(1/7,15455)*0,676]¹∕ ⁴ /4*5,67*10⁻⁸ W/m²K⁴ }¹∕ ⁴

Te.ganymede = 107,91 K

Tsat.mean.ganymede = 110 K (- 163 oC)